
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

USING NEGATIVE INFORMATION
TO IMPROVE PERFORMANCE OF

FORWARD SCATTER ARRAYS

by

Daniel B. Widdis

March, 1995

Thesis Advisor: Alan R. Washburn

Approved for public release; distribution is unlimited.

19950821028

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget. Paperwork Reduction Project (07O4-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1995.
3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE USING NEGATIVE INFORMATION TO
IMPROVE PERFORMANCE OF FORWARD SCATTER ARRAYS

6. AUTHOR(S) Widdis, Daniel B.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ll. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Many tracking algorithms, such as implementations of Kaiman filters, use only target positioning data as
input. They ignore negative information from sensors that do not detect the target. Recent improvements
in computing performance allow the development of tracking algorithms that can fuse information from
many sources, including negative information, into the target motion analysis. This thesis evaluates the
significance of negative information in a discrete tracking algorithm applied to a tracking scenario in which
an array of forward scatter tripwire sensors covers the search area. Additionally, this thesis explores the
effect of selected arrangements of an array of tripwire sensors and performance parameters on tracking
capability. Using negative information significantly improves tracking performance, especially in a
cost-effective arrangement of tripwires where several lines of position are coincident.

PTIC QUALITY INSPECTED 2

14. SUBJECT TERMS FORWARD SCATTER TRIPWIRE NEGATIVE
INFORMATION DISCRETE TRACKING TARGET MOTION ANALYSIS

15. NUMBER OF
PAGES 89

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

USING NEGATIVE INFORMATION TO IMPROVE PERFORMANCE
OF FORWARD SCATTER ARRAYS

by

Daniel B. Widdis
Lieutenant, United States Navy

B.S., United States Naval Academy, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
March 1995

Sgr U^B<£1^_

Peter Purdue, Chairman
Department of Operations Research

in

Unaaraousiceä
Justlficatlc

By .
DIst.rltmt.SDD/ ,

Availability Codes

.Blsst

,1
Avail and/os5

Speoisl

IV

ABSTRACT

Many tracking algorithms, such as implementations of Kaiman filters, use only

target positioning data as input. They ignore negative information from sensors that do

not detect the target. Recent improvements in computing performance allow the

development of tracking algorithms that can fuse information from many sources,

including negative information, into the target motion analysis. This thesis evaluates the

significance of negative information in a discrete tracking algorithm applied to a tracking

scenario in which an array of forward scatter tripwire sensors covers the search area.

Additionally, this thesis explores the effect of selected arrangements of an array of

tripwire sensors and performance parameters on tracking capability. Using negative

information significantly improves tracking performance, especially in a cost-effective

arrangement of tripwires where several lines of position are coincident.

VI

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic errors,

they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

vu

Vlll

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM DEFINITION 1

B. TRACKING ALGORITHM AND SIMULATION 1

C. MEASURES OF EFFECTIVENESS 3

II. TRACKING MODEL 5

A. TRIPWIRE DETECTION MODEL 5

B. TRIPWIRE FIELD PATTERNS 6

C. TARGET MOTION MODEL 6

D. FUSION OF DETECTION AND NON-DETECTION

INFORMATION 7

1. Motion Update 7

2. Information Update 8

3. Display 9

III. DATA ANALYSIS METHODS 13

A. MEAN MISSED DISTANCE (MMD) 13

B. ACCURACY 14

IV. RESULTS 19

A. NEGATIVE INFORMATION SIGNIFICANCE 19

B. SENSITIVITY OF TRACKERS TO VELOCITY STATE 23

C. SENSITIVITY OF TRACKER TO FALSE ALARM

PROBABILITY 24

IX

V. OPTIMAL ARRANGEMENT OF A TRIPWIRE HELD 29

A. PROXIMITY OF SOURCES 30

B. DENSITY OF TRIPWIRE FIELD 34

VI. CONCLUSIONS 37

A. SIGNIFICANCE OF NEGATIVE INFORMATION 37

B. TRIPWIRE ARRANGEMENT 37

C. SUGGESTIONS FOR FURTHER RESEARCH 37

APPENDDC A. CONSTANT CUMULATIVE LENGTH TRIPWIRE

PATTERNS 39

APPENDIX B. VARIABLE SOURCE PROXIMITY TRIPWIRE PATTERNS . . 41

APPENDIX C. VARIABLE DENSITY SPOKE TRIPWIRE PATTERNS 49

APPENDIX D. HEXTRACK TARGET MOTION ASSUMPTIONS 53

APPENDIX E. HEXTRACK SOURCE CODE 57

LIST OF REFERENCES 73

INITIAL DISTRIBUTION LIST 75

EXECUTIVE SUMMARY

Many tracking algorithms or trackers operate using only sensor information that

indicates a potential target. They thus ignore the negative information from sensors that

do not detect the target. These trackers, such as the Maneuvering Target Statistical

Tracker (MTST), are frequently based on extended Kaiman filters (Stone, 1991).

Recent improvements in computing performance allow the development of trackers

that can fuse information from many sources, including negative information, into the

target motion analysis. The primary examples are search tactical decision aids (TDAs)

such as VPCAS, PACSEARCH, ASWTDA, (Wagner, 1989), and Nodestar (Stone,

1991). There is sufficient computational difficulty in the fusion of negative information

to warrant investigation of the significance of this data, and evaluation of the accuracy

of the resulting target distributions.

This thesis considers a discrete tracking algorithm applied to a tracking scenario

in which an array of forward scatter tripwires covers the search area. The tripwire model,

based on current research at the Johns Hopkins University Applied Physics Laboratory

(JHU-APL) in bistatic forward scatter acoustic arrays, provides a long-range line segment

capable of reporting, with certain probability, the presence (or absence) of a target

crossing the tripwire during a given time interval. Practical considerations determine a

few basic arrangements of an array of such tripwires.

Some mathematical models of the performance of such an array assume that the

contribution of negative information to the tracking algorithm is negligible (Loane,

September 1993, p. 9). This thesis shows that fusion of negative information into a

tracking algorithm can significantly enhance its performance. The effect is most distinct

in arrangements of line-of-position sensors that share a common point, and in situations

where spurious (false) alarms produce a large number of detections. In the case of

forward scatter arrays, where cost-effective arrangements of tripwires will likely have

coincident endpoints, fusion of negative information into the target motion analysis is

necessary to produce accurate results.

XI

Implementation of tracking using negative information requires estimates of the

probabilities of target detection as well as false alarms. While improper assumptions

degrade tracker performance, their effect is less significant than choosing not to take

negative information into account.

In a source-receiver implementation of tripwires, practical implementation of an

array of tripwires would involve placement of many receivers around each source.

Constant-cost analysis of the effects of leaving gaps in, or overlapping, coverage, shows

that arrangement of the sources just far enough apart to provide complete coverage results

in the best localization of the target.

Addition of tripwires can continually enhance the performance of a field of

tripwires. This thesis indicates that a minimum number of tripwires are needed to provide

adequate tracking capability, with further additions marginally improving performance.

This thesis may be used as a starting point for further analysis into the significance

of negative information for other types of tracking systems, and provides useful insight

into the practical arrangement of a forward scatter tripwire array.

Xll

I. INTRODUCTION

A. PROBLEM DEFINITION

Many tracking algorithms or trackers operate using only sensor information that

indicates a potential target. They thus ignore the negative information from sensors that

do not detect the target. These trackers, such as the Maneuvering Target Statistical

Tracker (MTST), are frequently based on extended Kaiman filters (Stone, 1991).

Recent improvements in computing performance allow the development of trackers

that can fuse information from many sources, including negative information, into the

target motion analysis. The primary examples are search tactical decision aids (TDAs)

such as VPCAS, PACSEARCH, ASWTDA, (Wagner, 1989), and Nodestar (Stone,

1991). There is sufficient computational difficulty in the fusion of negative information

to warrant investigation of the significance of this data, and evaluation of the accuracy

of the resulting target distributions.

This thesis considers a discrete tracking algorithm applied to a tracking scenario

in which an array of forward scatter tripwires covers the search area. The tripwire model,

based on current research at the Johns Hopkins University Applied Physics Laboratory

(JHU-APL) in bistatic forward scatter acoustic arrays, provides a long-range line segment

capable of reporting, with certain probability, the presence (or absence) of a target

crossing the tripwire during a given time interval. Practical considerations determine a

few basic arrangements of an array of such tripwires.

Some mathematical models of the performance of such an array assume that the

contribution of negative information to the tracking algorithm is negligible (Loane,

September 1993, p. 9). This thesis evaluates the validity of that assumption, as well as

the merits of selected tripwire array arrangements.

B. TRACKING ALGORITHM AND SIMULATION

This thesis develops a simulation and tracking algorithm, called HexTrack,

programmed in Turbo Pascal (Borland, 1992). HexTrack incorporates detection

information from a simulated array of tripwire sensors arranged in a search area.

HexTrack generates real detections by simulating target motion in a discrete target

position state space, although the tracking algorithm does not use its knowledge of actual

target location. HexTrack also generates spurious detections {false alarms) from the

tripwire sensors. Two separate trackers generate likelihood distributions: the positive

information tracker incorporates only detection information, and the negative information

tracker incorporates both alarm and non-alarm information. HexTrack then compares the

likelihood distributions to the simulated target position to evaluate tracker performance.

The target state space consists of 6,290 hexagonal cells covering a 150 by 150

nautical mile search area. HexTrack uses hexagonal cells to take advantage of radial

symmetry for target motion and to avoid the complications of cells adjacent to each other

only at corners. (Six other cells border each interior cell on its edges.) Memory, data

segment, and heap size constraints in Turbo Pascal limit the number of cells. HexTrack

calculates an alarm probability for each cell-tripwire combination, accounting for the

probability that the tripwire alarm is a result of target presence in that cell, as well as the

probability of a false alarm.

HexTrack initializes the trackers with likelihood distributions uniform over the

search area and the target in a randomly chosen cell. On each iteration, representing a

step of discrete time, HexTrack:

1. Updates actual target position, using a random number generator.

2. Calculates new likelihood distributions, based on the likelihood distribution
at the end of the previous iteration and target motion probabilities (motion
update).

3. Calculates tripwires alarming, using a random number generator and
conditioning on actual target position.

4. Updates both trackers' likelihood distributions to incorporate tripwire alarm
information (positive information update), if any.

5. Updates the negative information tracker's likelihood distribution to
incorporate tripwire non-alarm information (negative information update).

6. Calculates and records tracker performance statistics.

C. MEASURES OF EFFECTIVENESS

Point estimates of target position are the basis for the usual measure of

effectiveness (MOE) for a tracking system, missed distance. Since HexTrack produces

likelihood distributions of target position, a more appropriate MOE is mean missed

distance. (Stone, 1991, p. 8) Additionally, this thesis uses an MOE representing accuracy

of the likelihood distributions. Chapter in discusses these MOEs in detail.

II. TRACKING MODEL

A. TRIPWIRE DETECTION MODEL

The simulated sensors providing detection/non-detection information to HexTrack

are based on bistatic forward scatter acoustic arrays. These arrays operate by transmitting

sound omnidirectionally from an acoustic source. When a target (normally a submarine)

is near the line between the source and a remote receiver, the target scatters additional

sound energy towards the receiver. The additional energy at the receiver, if above a

predetermined threshold, indicates a detection. (Loane, December 1993) Because the

target scatters the most acoustic energy directly opposite the source (forward scattering),

detections only occur in the vicinity of the line between the source and receiver, hence

the term tripwire. Figure 1 illustrates the basic operation of a forward scatter array.

Figure 1. Operation of a forward scatter array (tripwire). As the target passes
between the source and receiver, sound from the source is scattered forward past the
target. The additional noise at the receiver is interpreted as a detection.

Forward scatter arrays are capable of detection ranges much longer than other

bistatic arrays (Loane, 1992). A realistic, unclassified estimate of maximum detection

range is 50 miles. This thesis models tripwires as rectangular areas two miles wide and

up to 50 miles in length. Detections occur as Bernoulli trials, occurring once for each

tripwire at the end of 7.06 minute time intervals. The target motion model is the basis

for interval length. HexTrack assumes the probability that a tripwire detects the target

during a single time interval is uniform over the entire search area, independent from

interval to interval, and independent of other tripwires. In addition to detections caused

by target presence in the detection area, each tripwire has a probability during each time

interval of generating a spurious (false) alarm, independent of other tripwires, the target,

and from interval to interval. In reality, detection and false alarm probabilities would

vary with geographic and environmental conditions, and potentially be subject to

interference from the acoustic sources of other tripwires.

B. TRIPWIRE FIELD PATTERNS

Each receiver can potentially detect along the line to multiple sources. Cost

considerations encourage use of this feature. Since acoustic sources are at least an order

of magnitude more expensive than receivers (Loane, 1992), a field of tripwires would

likely consist of multiple receivers arranged around each source. Figure 2 shows an

example of a portion of such a field. Appendices A, B, and C show this Spoke pattern

and other tripwire patterns considered in this thesis.

C. TARGET MOTION MODEL

Target motion in HexTrack is based on a Markov state transition matrix operating

on target position at each iteration. During each iteration, the target remains in the same

cell with some probability, or moves to one of the six adjacent cells.

A separate simulation allowed empirical determination of position state transition

probabilities, both unconditional and conditioned on the position state transition on the

previous iteration, which represents a velocity state. Appendix D lists the target motion

assumptions, simulation, and resulting transition probabilities. The motion update for the

likelihood distribution does not use target velocity information due to programming

limitations on numbers of variables. Chapter IV explores the significance of this

simplification.

_——-^S\—-___
(R) —-(*)

(RV"^ ~~~~~~~~®
(*J ((£)

(Rj (R)
(RJ

(R1

®
(R)

(_D A /^ (Rj
\ (R) \
(R)^\

(*)
(R)

TRJ

/^^JvX^^v \
/^ J®L ^^/^N
-^^^^(R\^"^^^

__—-—{*) _________
(Jy^

-
(Is) - Source

(IT) - Receiver

"^XSJ

Figure 2. A portion of the Spoke tripwire pattern. Several receivers form tripwires
with each source. Only a repeating element of the pattern is illustrated; the sources
are arranged in equilateral triangles to fill up space.

D. FUSION OF DETECTION AND NON-DETECTION INFORMATION

HexTrack performs three major steps each iteration: a motion update, an

information update, and display of the updated distribution. Appendix E lists the

HexTrack source code. The following sections outline the computations performed in

each step.

1. Motion Update

The tracker assumes target motion is determined by a Markov transition

probability matrix M, with entries

Mi} = Pr(target in cell / moves to cell j),

where row sums

j

Actual target motion in the HexTrack simulation is determined by the same matrix M in

cases where the velocity state is ignored.

Let Yk be the target's position at iteration k. Let Pk be a row vector of

probabilities

Pik = V?(Yk=i | information through iteration k),

where

EP* = ! • (2)
i

Pk is the tracker's presumed distribution of target position at the end of the £th iteration,

given the initial distribution and all motion and information updates from k and previous

iterations.

The motion update from iteration k to k+1 is

rk+l rkm »

where

P'iMi = Pr(^t+y=J" I information through iteration k).

The superscript - denotes that this distribution does not yet include information from

iteration k+1.

2. Information Update

Tripwires alarm (report a detection) either as a result of target presence in a cell

near the detecting tripwire or as a result of a spurious alarm. For each cell i and tripwire

j, calculate an alarm probability

Ai; = Pr(tripwire j alarms given target is in cell /).

For each cell i, define the non-alarm probability NAPt as the probability that no tripwires

alarm if the target is in that cell. Then

NAPt = l[{l-Af. (4)

For the positive information tracker, the information update for each cell / is

P+ = P~ n \
i

alarmed

(5)

The negative information tracker includes the probability of tripwires not alarming

in the information update:

P+ = P~ n \
J

alarmed

n (i
j not

alarmed

-4/) (6)

Note that the negative information tracker uses both positive (detection) and negative

(non-detection) information. The abbreviation of the description is made for ease of

readability.

For ease of calculation, Equation 6 can be rewritten

P+ = P~ n ~^—
alarmed

NAP, (7)

The distribution is normalized to a probability distribution by

P +

P: ijc+l

X) Pi*+\
(8)

Equations 6 and 8 are a straightforward application of Bayes' formula (Ross, 1993, p. 14).

The use of products of probability reflects the assumption of independence of detections.

3. Display

After each iteration, HexTrack displays the likelihood distributions. HexTrack

sorts cells by Pik and displays them with brighter colors representing higher likelihoods.

Each color change represents the boundary of an Area of Uncertainty (AOU) or

containment region. The display also shows actual target location, permitting qualitative

analysis of tracker performance.

Figure 3 is an example of HexTrack's display. The color shades are reversed such

that the darker shades of grey represent the brighter colors on the display and indicate

higher likelihood. The actual target position, unknown to the tracker, appears as a white

(black in the figure) dot just above and to the left of the center of the search area. The

target is near a tripwire that it caused to alarm; false alarms have occurred on several

other tripwires in the search area. The likelihood distribution is higher for both trackers

on the alarming tripwires, highest where the alarmed tripwires are near enough that target

motion could account for both alarms. The negative information tracker shows the effect

of non-alarm information, suppressing the likelihood distribution on tripwires that did not

alarm. Most of the likelihood for the positive information tracker is in the center, where

six alarmed tripwires intersect.

Note that Figure 3 is after only two iterations, so very little information has been

accumulated for either tracker, and the distribution is highly multimodal. Figures 6 and

7, in Chapter IV, show similar comparisons after several more iterations.

The statistics shown at the bottom of Figure 3 are examples of the performance

statistics HexTrack computes during the display process. Chapter III discusses the

purpose and calculation of these statistics.

10

Negative Information Tracker Positive Information Tracker

non-alarming tripwires

Mean Missed Dist: 58.820183 Mean Missed Dist: 31.846104
AOU to include T: 0.749950 AOU to include T: 0.983986
Prop, in 50X AOU: 0.500000 Prop, in 5OX AOU: 0.000000

Number of iterations: 2

Figure 3. Screen capture of HexTrack display. The negative information tracker
suppresses likelihood at tripwires that do not alarm. The positive information tracker's
distribution is highest at the intersection of the alarmed tripwires.

11

12

ffl. DATA ANALYSIS METHODS

To quantitatively compare the performance of the negative information tracker and

the positive information tracker, appropriate Measures of Effectiveness (MOEs) are

necessary. The MOEs used relate to two factors: the tracker's ability to estimate true

target position, and the accuracy of the calculated distribution. The distances from target

locations predicted by the tracker to the actual target location, weighted by likelihood,

represent the ability of the tracker to estimate target position. With this measure, smaller

is better. Accuracy is a statistical measure of how well the target likelihood distribution

represents the tracker's uncertainty of the target's position. Accuracy measures range

from 0 to 100%, where larger is better. The following sections formally define these

MOEs.

Both MOEs discussed rely on knowledge of actual target position for calculations.

Although HexTrack keeps track of target position for the generation of real sensor

contacts and collection of these performance statistics, the trackers do not use this

knowledge to generate the likelihood distributions.

HexTrack records data for 50 iterations, approximating a six hour tracking period,

replicating each set of parameters 60 times. At the beginning of each replication,

HexTrack resets the target likelihood distributions to uniform over the search area, and

relocates the target randomly in the search area. Both MOEs are then applied to the

resulting 3000 data points.

A. MEAN MISSED DISTANCE (MMD)

The usual measure of tracker performance for trackers that produce point estimates

of target position is missed distance. This measure is not appropriate for HexTrack

because HexTrack does not forecast a specific target position, but a generalization of this

measure is straightforward. Let

Pi = calculated probability the target is in cell i

and

13

dl - distance from cell / to the target position.

Then the root mean squared missed distance (Stone, 1991, p. 10) is

MMD = N?M (9)

HexTrack calculates MMD on every iteration of the simulation, and uses the mean

MMD over all iterations and replications.

B. ACCURACY

Using mean missed distance as the sole MOE is not sufficient. A specific

example is a bimodal target distribution. A unimodal distribution with a peak between

the modes of the actual distribution could have a lower MMD than the actual distribution.

In the MMD calculation, it is better to be half-right all of the time than to be right only

half the time. Figure 4 shows a one-dimensional example of this problem. The bimodal

distribution has a missed distance of 0 with probability 0.5 and 2 with probability 0.5,

resulting in an MMD of 1.414. The unimodal distribution has a missed distance of 1 with

probability 1.0. An MOE representing the accuracy of a tracker's distribution is

necessary.

Bimodal Distribution

^AO^

1'
f 20.4-

1 ,§0.2-

0- '" i i i

Unimodal Distribution

fo.8

«0.6

§0.4

0

Target Location

Target located at 0 or 2 with probability 0.5 each.

MMD=1.414 MMD=1.000

1 2
Target Location

Figure 4. Example of an inaccurate unimodal distribution that has a lower MMD
than the actual bimodal distribution. An MOE measuring accuracy is necessary.

14

The target position probability distribution allows calculation of Areas of

Uncertainty (AOUs). Trackers based on Kaiman filters, whose distribution for target

position is bivariate normal, frequently specify a 2G (86.5%) uncertainty ellipse around

the mean estimated target position. If the tracker is accurate, this AOU contains the

target 86.5% of the time. HexTrack produces analogous containment regions by sorting

the probabilities that the target is in each cell from highest to lowest. The X%

containment region consists of the highest likelihood cells that must be summed to reach

X% cumulative probability.

On each iteration, HexTrack records the smallest containment region that includes

the target. This region includes all cells with likelihood higher than the cell containing

the target and a random portion of the cell containing the target. It is the discrete

counterpart of the proportion of a bivariate normal distribution contained inside an ellipse

intersecting the target. The containment percentile of this region, for a target in cell t on

iteration k, is

x
k = EPt + »W» (io)

i\pt>p,

where u is a uniform random variable from [0,1]. If the tracker is accurate, the xk values

correspond to selection of random variables from a uniform distribution on [0,1]. The

multiplication by u in Equation 10 assures that xk is uniformly distributed, as long as the

target's location / actually has the distribution p,. (Stone, 1991, p. 9)

To calculate accuracy, all xk, from 60 replications of 50 iterations each, are sorted

with x(1) being the smallest and x(mo) the largest. These values define an empirical

distribution function:

0 for x < x(1)

F(X) =] 3ÖÖÖ f°r *» * X < *(*+1) ' *=1'2' • '29" (U)

.1 for x * x(3000) .

15

The Kolmogorov-Smirnov (K-S) statistic, representing the maximum deviation of this

empirical function from the uniform distribution, is

D = max|F(*) - JC| . (12)
X

Accuracy is then defined (Stone, 1991, p. 12) as

A = 100(1 - D) % . (13)

If the tracker produces a likelihood distribution that accurately represents its

uncertainty in estimating target position, D is near zero and Accuracy is near 100%. Note

that D is a K-S statistic in spite of the fact that the distribution of the target's position is

discrete because of the inclusion of a random portion of the cell containing the target.

Figure 5 shows an example of accuracy measurements. In the pessimistic tracker,

the worst error shows the 42% containment region containing the target 79% of the time.

The optimistic tracker contains the target in the 42% containment region only 16% of the

time. The accurate tracker contains the target in the 19% containment region 22% of the

time.

It is important to observe that Accuracy alone is not a sufficient MOE. A

likelihood distribution that continues to assume the target is distributed uniformly over

the search area produces a very accurate distribution, but with a high MMD. Roughly

speaking, the best tracker minimizes MMD among trackers that are highly accurate.

16

Pessimistic Tracker Optimistic Tracker

1

K-S statistic: 0.26
Accuracy: 7496

K-S statistic: 0.37
Accuracy: 6396

02 0.4 0.6 OJ l
Containment Region, X

H
•g 0.4-

02 04 0.6 0.1
Containment Region, X

Accurate Tracker
l-,

K-S statistic: 0.03
Accuracy: 9796

0.4 0.6 0.8 1
Containment Region, X

Figure 5. Examples of accuracy measurement in pessimistic, accurate, and optimistic
trackers. Both pessimistic and optimistic trackers result in low accuracy.

17

18

IV. RESULTS

This chapter considers three different patterns of tripwire arrangement. In addition

to a spoke pattern that uses multiple receivers arranged around each source, a regular

square grid of tripwires and (uniform) random placement of tripwires are considered.

Appendix A shows these three arrangements, which are comparable in the cumulative

length of tripwires in the search area. Since the tripwire model assumes the sensors cover

the area of their length and a fixed width, this comparison of patterns considers

comparable density of tripwire coverage. Cost considerations are deferred until Chapter

V.

A. NEGATIVE INFORMATION SIGNIFICANCE

A tracker that uses only positive information is at a great disadvantage when given

only line-of-bearing information. When several lines intersect at a common point, such

as the source location in the spoke arrangement, the target distribution becomes artificially

high near the source. Additionally, the tracker allows the distribution to expand into

regions near the source even during periods in which no tripwires alarm in that region.

The comparison outlined in this section highlights this disadvantage.

Observation of the tracker displays during the simulation runs shows that the

tracker using only positive information generates a distribution with highest likelihood at

and around the intersection of alarming tripwires. The tracker incorporating negative

information suppresses the target distribution at these intersections when the tripwires do

not alarm, and the likelihood distribution is highest at alarming tripwires and in the areas

between non-alarming tripwires.

Figure 6 shows an example of typical tracker behavior when tripwires are arranged

in the spoke pattern. In this example, only two tripwires have alarmed. The positive

information tracker's distribution is higher near the intersection of the two tripwires, at

the centrally located source. The negative information tracker considers the fact that

several other tripwires in that area did not alarm and suppresses the distribution there,

19

Negative Information Tracker Positive Information Tracker

Mean Missed Dist: 7.115302 Mean Missed Dist: 19.243799
AOU to include T: G.336688 AOU to include T: 0.974135
Prop, in 50"/ AOU: 0.680000 Prop, in 50X AOU: 0.560000

Number of iterations: 25

Figure 6. HexTrack display demonstrating typical Spoke pattern tracking. The negative
information tracker suppresses the distribution where other tripwires have not alarmed,
resulting in better localization of the target.

causing the distribution to be properly concentrated much nearer the target. The effect

shown in Figure 6 becomes even more pronounced as additional tripwires alarm,

especially if the alarms are false. Typically the positive information tracker's distribution

in these circumstances is almost exclusively in cells immediately surrounding the source

common to the highest number of alarming tripwires.

Table I summarizes Accuracy and Mean Missed Distance statistics for the positive

information tracker, that used only detection information, and the negative information

tracker, that incorporated both detection and non-detection information, for the three

tripwire arrangements considered, at three levels of false alarm probability.

20

False
Alarm
Prob.

Tripwire
Arrangement

Average MMD (miles) Accuracy (%)

Negative Positive Negative Positive

0.00

Spoke 11.85* 20.05 98.80* 54.57

Grid 8.76 8.58* 98.97* 81.17

Random 19.59* 20.84 96.14* 86.55

0.01

Spoke 21.41* 37.30 96.91* 25.32

Grid 18.43 17.91* 97.07* 81.11

Random 28.78* 31.04 97.08* 61.82

0.10

Spoke 45.22* 63.05 97.77* 5.11

Grid 37.30* 38.91 97.71* 83.19

Random 45.78* 54.94 97.28* 35.12

* denotes winner
Table I. Tracker performance statistics for the basic target motion model. The Accuracy
of the negative information tracker is better than the positive information tracker in every
case. The positive information tracker has a slightly lower MMD in only two cases,
using the grid pattern with zero or low levels of false alarms.

The accuracy statistics for the negative information tracker are all above 96%.

This is an expected result of these cases, in which the assumptions exactly match actual

target motion. Accuracy can be expected to asymptotically approach 100% as these cases

are repeated.

Accuracy of the positive information tracker shows extremely significant

degradation caused by the intersection of the lines of position. The worst performance

is with the spoke arrangement, where 42 tripwires intersect at the location of the source.

The magnitude of the error increases at higher rates of false alarms. The grid

arrangement is the best for the positive information tracker, as only two tripwires intersect

at any location in this pattern. The accuracy is still significantly worse than with the

negative information tracker.

21

The MMD statistics reflect the effect of these inaccurate distributions. In the

spoke arrangement, the negative information tracker is significantly better than the

positive information tracker. The negative information tracker shows slightly better

performance in the random arrangement, increasing as the false alarm rate increases,

causing accuracy of the positive information tracker to decrease. The only cases in which

the positive information tracker has a lower MMD than the negative information tracker

are the grid arrangement, with zero or low levels of false alarms. This apparent

improvement, however, is small, and is a result of the inaccurate distribution maintained

by the positive information tracker. Observation of HexTrack during these simulation

runs shows that the negative information tracker frequently produces a bimodal likelihood

distribution, centered around the last tripwire to detect the target, with the target in one

of the two peaks. The positive information tracker does not suppress the distribution on

the non-detecting tripwire, centering the likelihood distribution between the two most

likely target positions. As shown in Figure 4 of Chapter III, this averaging effect can

result in a lower MMD.

Figure 7 shows an example of typical grid arrangement likelihood distributions.

The negative information tracker's distribution is higher above and below the last

(horizontal) tripwire to alarm. The effects of a previous vertical tripwire alarm are also

seen in a right-left bimodality. The target is in one of these four high-probability regions

surrounding the intersection of these tripwires. The positive information tracker, however,

produces an elliptical distribution centered at the intersection of the tripwires. The

averaging effect of the positive information tracker results in a lower Mean Missed

Distance, but at the expense of accurately reporting the target likelihood distribution.

Considering only the negative information tracker, the grid pattern produces the

best tracking performance. It is important to note, however, that this comparison is made

using comparable total length of tripwires, without regard to cost. The grid pattern's

better performance justifies its choice in favor of the spoke pattern in a budget-limited

implementation only if the cost of tripwires is a function of their length.

22

NegatLve Information Tracker Positive Information Tracker

Mean Missed Dist:
AOU to include T:
Prop, in 50X AOU:

5.822409
0.305824
0.500000

Mean Missed Dist:
AOU to include T:
Prop, in 50X AOU:

5.388026
0.425467
0.333333

Number of iterations: 18

Figure 7. HexTrack display demonstrating typical Grid pattern tracking. The positive
information tracker produces a unimodal distribution with a low MMD; the negative
information tracker is more accurate.

B. SENSITIVITY OF TRACKERS TO VELOCITY STATE

The results in the preceding section are not significantly different if the target

motion assumptions change to include a velocity state for the target by conditioning

movement probabilities on the direction of movement in the previous iteration. Although

the trackers continue to ignore target velocity when performing the motion update, the

simulated target motion now includes a velocity state. Appendix D describes the

incorporation of velocity in the target motion. Table II shows the simulation results.

The negative information tracker accuracy is not as good as when the tracker's

assumptions match actual target motion, but accuracy is still above 92% in all cases and

always better than the positive information tracker. All other statistics show little change

23

False
Alarm
Prob.

Tripwire
Arrangement

Average MMD (miles) Accuracy (%)

Negative Positive Negative Positive

0.00

Spoke 10.32* 18.46 93.15* 49.94

Grid 9.27 9.03* 92.08* 76.98

Random 17.68* 18.86 94.44* 72.18

0.01

Spoke 18.20* 37.28 93.46* 18.58

Grid 19.37 18.72* 97.59* 78.75

Random 27.11* 29.93 93.82* 59.89

0.10

Spoke 48.46* 55.83 94.97* 5.75

Grid 41.00* 41.07 92.74* 77.92

Random 47.11* 55.74 95.31* 37.81

* denotes winner
Table II. Tracker performance statistics for the target motion model incorporating a
target velocity state. The negative information tracker has higher accuracy than the
positive information tracker in every case. The positive information tracker has slightly
lower MMD only with the grid pattern with zero or low false alarm probabilities. These
results differ little from the cases in which target velocity state was ignored.

from the results in Table I. These results imply that the effects of false alarms and

tripwire arrangements are more significant than inclusion of target velocity in the tracking

model.

C. SENSITIVITY OF TRACKER TO FALSE ALARM PROBABILITY

In addition to the three levels of false alarm probability shown in the preceding

sections, simulation runs for intermediate false alarm levels were conducted for the

negative information tracker. In one set of runs, the tracker used the actual probability

of false alarms for the information update to evaluate the effect false alarms have on

tracking. In the other set of runs the tracker assumed false alarms occurred with

probability 0.01 to evaluate the tracker's sensitivity to an inaccurate estimate of false

alarm rate. The results are shown in Table III and Figure 8.

24

False
Alarm

Probability

Average MMD (miles) Accuracy (%)

Tracker Uses
Actual

False Alarm
Probability

Tracker Uses
0.01

False Alarm
Probability

Tracker Uses
Actual

False Alarm
Probability

Tracker Uses
0.01

False Alarm
Probability

0.00 11.85 18.20 98.80 92.47

0.01 21.41 21.41 96.91 96.91

0.02 22.19 22.56 97.94 90.71

0.03 25.46 21.63 95.80 85.88

0.04 30.97 29.33 97.62 76.00

0.05 33.84 27.08 98.37 71.28

0.06 33.23 31.07 97.71 56.70

0.07 34.97 41.96 96.76 41.50

0.08 37.76 32.21 95.32 37.62

0.09 42.70 39.76 96.30 32.96

0.10 45.22 51.13 97.77 23.34

Table HI. Performance of the negative information tracker at several false alarm
probabilities. The MMD statistics depend more on the probability of false alarms than
the accuracy of the estimate of this probability. Tracker accuracy, however, is
significantly degraded by incorrect assumptions.

25

Mean Missed Distance as a Function of False Alarm Probability

Negative Information Tracker

CO
cu

u
c
o

»OL
Q fO

T3
CD
<n
v>

c o _
O IN

CD

o
a) o _
< *" *"

!»•

X

X

X

Tracker uses actual False Alarm Probability
Tracker uses False Alarm Probability of 0.01

X X
0.02 0.04 0.06 0.08

False Alarm Probability per Tripwire Per Iteration

0.10

Figure 8. MMD of negative information tracker at several false alarm probabilities.
MMD depends more on actual false alarm probability than the accuracy of the estimate.

Surprisingly, there is not a discernable difference in the MMD of the tracker using

correct false alarm probabilities, and the MMD using a constant value. This suggests that

the actual detections and false alarms are more important in determining MMD than the

weight applied to each detection or non-detection, a function of assumed false alarm rate.

The accuracy of the tracker incorrectly assuming a false alarm probability of 0.01,

however, shows that the incorrect assumption produces distributions that are increasingly

inaccurate as the magnitude of the error increases. Figure 9 shows the effects of the

improper assumptions.

When there are no false alarms but the tracker assumes that there are, it does not

give enough weight to the alarming tripwires. Although each alarm, actually a detection,

should limit the likelihood distribution exclusively to the area covered by the detecting

26

Accuracy Plots for Various False Alarm Probabilities
Negative Information Tracker - Using 0.01 False Alarm Probability

c
o

cu
or

E
_c
'o
c
O CO

<-> d

c
cu
a.

cu d
E

g CN

t <=>
o
Q.
O

.-/fi.
.-,_ — , . £3 1*

y///- \\j\j rcrccnt Accurocy baseline
_ Actual False Alarm Level yy? /•' rt r\r\

/yV / •■' (1 rt« .•yy / : U.U 1
. - - c\ no y/Y / .
.... n riA y/y / U.U*r

— 0.07
— 0.10 // / — " / .••• /■ ■ <

/ //
/ .■

y" /.■*' ^'

- * / y y' (
* /y / /

* / / .y
* yy y /

s /-' s / _
y /.' y

/ yy' J'
/

* /•'' y' / i
S /•'' '' • !

s /•'' f / i — ,' /■•' s / ;
/ / ■•' y x i

* ys **
' /y y j / // /' ^ /

- ,' yy -**
/ y/ *' 1 /y y' . * ^'
/y „• • ** y

// €-•••■• ^~- ^
—

/jf/'
y •

_—■—"*^"-""

t^y ■

yy ■ -

-——i r"~ i i i 1 1 1

0.2 0.4 0.6 0.8

Containment Region

1.0

Figure 9. Accuracy of the negative information tracker at several false alarm
probabilities. Underestimating false alarm probability produces a pessimistic distribution;
overestimating produces an optimistic distribution.

tripwire, the assumed possibility that the detection is false allows some of the distribution

to remain away from the detecting tripwire. The probability density of the likelihood

distribution in cells near the detecting tripwire is lower than it should be, but is still

higher than surrounding areas. A lower probability AOU contains the target, at the

detecting tripwire. The result is a pessimistic distribution; the tracker has better

localization of the target than it indicates.

When there are more false alarms than assumed, too much weight is given to

tripwire alarms, that are also more distributed. The tracker generates a distribution

peaked higher at alarming tripwires than is appropriate, requiring larger AOUs to contain

a target not near an alarming tripwire. This produces a distribution that is too optimistic.

27

In an actual implementation of a tripwire field, the rate of false alarms (in the

absence of a target) is measurable, so estimation errors are expected to be small. The

results of this section show that the actual rate of false alarms are more significant than

inaccurate estimation of the false alarm probability.

28

V. OPTIMAL ARRANGEMENT OF A TRIPWIRE FIELD

The results of Chapter IV demonstrate that HexTrack's negative information

tracker produces accurate distributions. This chapter discusses arrangement of a field of

tripwires in an optimal cost-effective sense using MMD as a measure of (in-)

effectiveness.

There are an infinite number of ways of arranging a field of tripwires. The three

arrangements considered in Chapter IV were based on specific features of the many

possible arrangements. Although the cost of an array of tripwires is uncertain, tripwire

sources cost an estimated 10 to 100 times as much as receivers. This chapter uses a

factor of 10 throughout.

The spoke pattern, shown in Figure 12 of Appendix A, is based on source-receiver

tripwires, taking advantage of the cost savings available when using multiple receivers per

source and multiple sources per receiver. The next section introduces a similar pattern

based on many receivers arranged around each source, called the circle pattern.

The grid pattern, shown in Figure 13 of Appendix A, minimizes the size of areas

between tripwires, reducing the distance the target travels between successive detections.

This pattern is only practical if the cost of each tripwire is primarily a function of length,

or if sources can not form tripwires with multiple receivers. Using the source-receiver

tripwires, however, the grid pattern becomes prohibitively expensive and wasteful.

The grid pattern shown in Figure 13 costs almost seven times as much as the

spoke pattern. The spoke pattern, if repeated over a large area, uses 20 receivers per

source. Note that this pattern forms 42 tripwires per source by allowing receivers on the

edges of the hexagonal pattern to form tripwires with two sources, and receivers on the

corners to form tripwires with three sources. The hexagonal area covered by one source,

and its associated tripwires, is 6495 square miles. Using the cost of a receiver as one

unit, and assuming sources are ten times more expensive than receivers, each set of 42

tripwires costs 30 units (an average cost of 0.71 units per tripwire). The coverage

available per cost unit is 216.5 square miles. To cover the 22,500 square mile area costs

29

104 cost units. In contrast, the grid pattern that has the same cumulative length of

tripwires as the spoke pattern employs 66 sources and receivers (see Figure 13 in

Appendix A) at a cost of 726 units.

Using the grid pattern at the same cost as the spoke pattern greatly reduces the

number of tripwires available and results in large gaps in coverage. If a grid-type pattern

is desired at the same 104 unit cost (per 22,500 square miles) as the spoke pattern, the

104 cost units would purchase an average of 9.5 sources and receivers. If arranged in an

alternating pattern along each axis, these sources and receivers would form only 19

tripwires. Since spanning the search area in each direction requires three tripwires, the

resulting pattern would have an average of 3.2 grid lines each 150 miles, leaving squares

47 miles on each side. It is not necessary to perform simulation runs to observe that such

a pattern would result in poor tracking performance (in terms of MMD).

The random arrangement, shown in Figure 14 of Appendix A is used to provide

comparison with previous models of tracking performance. Observation of HexTrack's

trackers with this arrangement also permits qualitative analysis of tracker performance

under various conditions, such as intersecting tripwires or gaps in coverage. The random

arrangement, using only one source for each receiver, is the costliest arrangement and

does not represent a practical method of distributing tripwires.

A pattern similar to the spoke pattern, with many receivers per source, is clearly

cost-effective. There are other variables in this type of pattern, however. The following

sections discuss variation of the distance between sources, at constant cost, and variation

of the number of receivers per source.

A. PROXIMITY OF SOURCES

The spoke pattern is based on locating sources exactly close enough to each other

such that every point in the search area is within 50 miles (the assumed maximum

tripwire length) of a source. The spoke pattern is a refined version of a pattern called the

circle pattern. The circle pattern is constructed by arranging receivers around a source

30

at equal intervals on a circle with radius 50 miles. All source-receiver pairs that are

within 50 miles of each other form tripwires.

The figures in Appendix B show the circle pattern with sources placed at

increasingly large distances from each other. The pattern is more evident viewing Figures

26 through 35 first, followed by Figure 25 and previous figures. The pattern shown in

Figure 23 has 20 receivers around each source, with sources arranged at precisely the

same distance from each other as in the spoke pattern. Note that more than 20 tripwires

are associated with each source, as receivers around other sources are within the 50 mile

radius. This pattern is essentially a rearrangement of the same number of sources used

in the spoke pattern.

To evaluate the effect of overlapping coverage by moving sources closer, and of

leaving gaps in the coverage by moving sources apart, several additional circle patterns

were generated. Using the proximity of sources to each other in the spoke pattern as a

reference point of 1.0, the number of receivers per source for other proximities is

calculated assuming constant total cost, and a repeating pattern over a large area. As the

sources become closer together, more are necessary to cover an equivalent search area,

so fewer receivers can be purchased. Having receivers from other sources close enough

to form tripwires partially mitigates this reduction in receivers. As sources are moved

apart, the savings from fewer sources allow the purchase of more receivers per source.

However, each receiver is only within range of one source. Appendix B shows the

tripwires formed at each level of proximity. Note that all of the circle patterns cost the

same as the spoke pattern.

Figure 10 and Table IV show the effect of varying source proximity. Relative

Proximity represents the factor of overlapping (Relative Proximity less than 1.0) or

gapping (Relative Proximity greater than 1.0) coverage. The pattern with proximity 1.0

has 20 receivers per source and has sources arranged exactly far enough that every point

in the search area is within the maximum tripwire length. False alarms occur at a

probability of 0.01 per tripwire per iteration.

31

Mean Missed Distance as a Function of Source Proximity

Negative Information Tracker

-a
<D
to
en

c
D
tu

a) 9
a> ^
o

> <

! _L _L
0.6 0.8 1.0 1.2 1.4

Relative Source Proximity (1.0 = Complete Coverage)

1.6

Figure 10. MMD of the negative information tracker as a function of source proximity
in the circle pattern. Moving sources together allows overlapping coverage, but results
in fewer receivers and some shorter tripwires. Moving sources apart permits more
receivers, but causes gaps in coverage.

32

Relative
Proximity

Receivers
per Source

Average MMD
(miles)

0.60 1 69.78

0.65 3 62.83

0.70 5 42.26

0.75 7 47.87

0.80 9 29.91

0.85 12 25.78

0.90 14 29.17

0.95 17 27.16

1.00 20 22.54

1.05 23 24.02

1.10 26 29.93

1.15 30 27.94

1.20 33 34.15

1.25 37 31.66

1.30 41 32.74

1.35 45 30.93

1.40 49 34.84

1.45 53 34.44

1.50 57 35.05

1.55 62 40.74

1.60 67 37.15

Table IV. MMD of the negative information tracker as
a function of source proximity in the circle pattern.
The lowest MMD is at a Relative Proximity of 1.0,
where sources are at the same proximity as the spoke
pattern.

33

At the low extreme, the cost of the additional sources drastically reduces the

number of receivers per source, resulting in few tripwires and large areas of uncertainty.

As the receiver-per-source ratio increases, MMD rapidly decreases as more tripwires

form. As gaps in coverage appear and receivers begin to be in range of only one source,

MMD increases sharply until all receivers are associated with only one source. Increasing

gaps in coverage cause the remaining increase in MMD, although the increased number

of receivers per source mitigates the increase. Figure 10 indicates that proximities near

1.0 are the lowest. The optimal circle pattern MMD of 22.54 miles is also comparable

with the MMD of the same-cost spoke pattern under otherwise identical assumptions,

21.41 miles.

B. DENSITY OF TRIPWIRE FIELD

Concluding from the previous section that the spoke pattern is a near-optimal

arrangement, this section considers the marginal benefit of additional receivers. The

number of tripwires per source in the spoke arrangement was varied from six to 60.

Figure 11 and Table V show the results of this analysis.

These patterns are not constant cost; they use the same number of sources in the

same location, while varying the receiver-per-source ratio to produce more tripwires. For

example, the 12 tripwire-per-source pattern costs half as much as the 42

tripwire-per-source spoke pattern used in Chapter IV. A ten to one ratio of source to

receiver cost is assumed.

Significant improvement in tracker performance is evident up to about 30 tripwires

per source, with smaller marginal improvement from addition of further tripwires.

Evaluation of the tactical requirements and value of added effectiveness is necessary to

state an optimal cost-effective value, but the results suggest a minimum of 30 tripwires

per source to take advantage of the significant improvement in performance.

34

Mean Missed Distance as a Function of Tripwire Density

Negative Information Tracker

<u
o
c
o

In 2
S *
TJ
0)
CO
CO

c
o
a)
2 o
a) CM
a>
D
cu > <

_L
20 40

Number of Tripwires per Source

60

Figure 11. MMD of the negative information tracker as a function of tripwire density
in the spoke pattern. Significant improvement occurs up to 30 tripwires per source;
marginal improvement occurs at higher numbers.

35

Tripwires
per Source

Receivers
per Source

Cost Relative to
Spoke Pattern

Mean Missed Distance
(miles)

6 2 0.4 66.10

12 5 0.5 51.52

18 8 0.6 45.41

24 11 0.7 34.87

30 14 0.8 23.92

36 17 0.9 21.76

42 20 1.0 21.41

48 23 1.1 17.14

54 26 1.2 14.49

60 29 1.3 14.37

Table V. MMD of the negative information tracker as a function of tripwire density in
the spoke pattern. Significant improvement occurs up to 30 tripwires per source; marginal
improvement occurs at higher numbers.

36

VI. CONCLUSIONS

A. SIGNIFICANCE OF NEGATIVE INFORMATION

Fusion of negative information into a tracking algorithm can significantly enhance

its performance. The effect is most distinct in arrangements of line-of-position sensors

that share a common point, and in situations where false alarms produce a large number

of detections. In the case of forward scatter arrays, where cost-effective arrangements of

tripwires have coincident endpoints, fusion of negative information into the target motion

analysis is necessary to produce accurate results.

Implementation of tracking using negative information requires estimates of the

probabilities of target detection as well as false alarms. While improper assumptions

degrade tracker performance, the effect of these assumptions is less significant than

choosing not to take negative information into account.

B. TRIPWIRE ARRANGEMENT

In a source-receiver implementation of tripwires, practical implementation of an

array of tripwires would involve placement of many receivers around each source.

Constant-cost analysis of the effects of leaving gaps in, or overlapping, coverage, shows

that arrangement of the sources just far enough apart to provide complete coverage results

in the best localization of the target. The spoke arrangement implements this coverage

plan while also using multiple sources per receiver.

Addition of tripwires can continually enhance the performance of a field of

tripwires. There appears to be a minimum number of tripwires needed to provide

adequate tracking capability, with further additions marginally improving performance.

C. SUGGESTIONS FOR FURTHER RESEARCH

This thesis makes several simplifying assumptions that warrant further analysis to

extend the results to a wider range of real-world problems. One significant assumption

is that of a single target in the search area. Further analysis could develop MOEs and

37

analyze the significance of negative information in a no-target or multiple target

environment.

The trackers in this thesis did not include a velocity state for the target because

of programming constraints in the microcomputer implementation. Although analysis

shows this effect to be small, further study into how a negative information tracking

analysis can include target velocity state could provide additional useful results.

Finally, this thesis analyzed a specific sensor, the forward scatter tripwire. The

significance of negative information for other types of sensors is not obvious. A model

fusing both positive and negative information from multiple sensors of varying types can

extend the results of this thesis to many tracking scenarios.

38

APPENDIX A. CONSTANT CUMULATIVE LENGTH TRIPWIRE PATTERNS

Figure 12. Spoke tripwire pattern.

Figure 13. Grid tripwire pattern.

7
•

'**&-"—" / %\ \ '/ */ ^.ä^r^-. ^k

Figure 14. Random tripwire pattern.

39

40

APPENDIX B. VARIABLE SOURCE PROXIMITY TRIPWIRE PATTERNS

Figure 15. 0.60 Relative Proximity Circle pattern.

Figure 16. 0.65 Relative Proximity Circle pattern.

Figure 17. 0.70 Relative Proximity Circle pattern.

41

Figure 18. 0.75 Relative Proximity Circle pattern.

Figure 19. 0.80 Relative Proximity Circle pattern.

Figure 20. 0.85 Relative Proximity Circle pattern.

42

/ >\\ \ 1 /
>^x%. \ v // /

WAS>
NyK^T / // Ä \

W^
i\ \V \\T II /

A\ lv\ W // M^t
Figure 21. 0.90 Relative Proximity Circle pattern.

^MS^i
ul

i m\ \ \\ \\\\ // 1 mx \ \\ \\\\ /

Figure 22. 0.95 Relative Proximity Circle pattern.

^v\t P^t

1 1 ̂ ¥P 1^
Figure 23. 1.00 Relative Proximity Circle pattern.

43

^psll pill
fe?^fe

Figure 24. 1.05 Relative Proximity Circle pattern.

'^fp^^l

B? Ife^fe
Figure 25. 1.10 Relative Proximity Circle pattern.

» ":A-""" ■

Figure 26. 1.15 Relative Proximity Circle pattern.

44

Figure 27. 1.20 Relative Proximity Circle pattern.

** s^s/flx

l^äü

SB
w$^ ̂ ifffe

Figure 28. 1.25 Relative Proximity Circle pattern.

§1

^1

\\\

^ \ \\\ w
Figure 29. 1.30 Relative Proximity Circle pattern.

45

^Hj ///// /y'\-* ^i

41
1
6

^

Figure 30. 1.35 Relative Proximity Circle pattern.

Figure 31. 1.40 Relative Proximity Circle pattern.

Figure 32. 1.45 Relative Proximity Circle pattern.

46

^i§§iiiä ♦^^■^r

—-^^^MmjX^S^—• •—^^

w '%

h M
•.

Hll$$^
Figure 33. 1.50 Relative Proximity Circle pattern.

^0 %

.♦tT

'W//

Figure 34. 1.55 Relative Proximity Circle pattern.

^^^^^^5^*

•••I •••

k Jl Jill
^^—+

Figure 35. 1.60 Relative Proximity Circle pattern.

47

48

APPENDIX C. VARIABLE DENSITY SPOKE TRIPWIRE PATTERNS

Figure 36. Six Tripwire per Source Spoke pattern.

Figure 37. 12 Tripwire per Source Spoke pattern.

Figure 38. 18 Tripwire per Source Spoke pattern.

49

¥^ / i
\\V\ w

^r—-^. \

IN? ^ \ \ ^\ w \

w^<k
Figure 39. 24 Tripwire per Source 5po£e pattern.

W^ilW^% |p||p^
ii^^ßm
wdml/I^

Figure 40. 30 Tripwire per Source Spoke pattern.

Figure 41. 36 Tripwire per Source Spoke pattern.

50

Figure 42. 42 Tripwire per Source Spoke pattern.

Figure 43. 48 Tripwire per Source Spoke pattern.

Figure 44. 54 Tripwire per Source Spoke pattern.

51

Figure 45. 60 Tripwire per Source Spoke pattern.

52

APPENDIX D. HEXTRACK TARGET MOTION ASSUMPTIONS

The target motion model used by HexTrack is a discretization of a stochastic target

motion model, programmed in another program called HexMotion. The target is assumed

to execute maneuvers randomly according to a Poisson process, with a rate of three

maneuvers per hour. When a maneuver occurs, the target chooses a new course

(uniformly from 0° to 360°) and a new speed V where V=5 with probability 0.4, V=10

with probability 0.3, and 7=15 with probability 0.3.

HexMotion initializes the target in the center of a cell, and calculates the target's

position every 7.06 minutes, corresponding to the discrete tracking intervals in HexTrack.

Each interval, HexMotion determines whether the target remains in the same cell, or

enters one of the adjacent cells. This process repeats for 15 million iterations to produce

an empirical probability distribution for target motion. Both unconditional probabilities

and probabilities conditioned on a change of cell in the previous iteration are calculated.

HexMotion implements the following pseudo-code algorithm:

initialize target position and number of iterations;
generate random course and speed;
generate time-to-maneuver (exponential random variable);
time-to-iteration <— 7.06 minutes;

while iterations < 15 million do
if time-to-maneuver < time-to-iteration then

calculate new target position at maneuver time;
generate new random course and speed;
decrement time-to-iteration by time-to-maneuver;
generate new time-to-maneuver (exponential random variable);

else
calculate new target position at end of iteration;
determine and record change of cell since last iteration;
decrement time-to-maneuver by time-to-iteration;
time-to-iteration <— 7.06 minutes;
increment iterations;

end if;
end while;

53

Figure 46 shows the numbering of the cells used in Table VI. Table VI shows the

probabilities of movement to adjacent cells conditioned on movement in the previous

iteration. HexTrack uses these empirical probabilities in its target motion model along

with the velocity state. Table VI also shows the unconditional probabilities of movement

to adjacent cells. HexTrack uses these in its basic motion model and the tracker motion

update. The HexMotion results for symmetric entries are averaged.

Figure 46. Adjacent cell numbering
used in target motion matrix. Cell n is
symmetric with cell 1-n.

54

Conditional Target Cell Change This Iteration: Cell 0 to ..
Probabilities

0 1 2 3 4 5 6

Target
Cell

Change
Previous
Iteration:

CellO
to ...

0 .3922 .1013 .1013 .1013 .1013 .1013 .1013

1 .4316 .1485 .1419 .1419 .0503 .0503 .0355

2 .4316 .1419 .1485 .0503 .1419 .0355 .0503

3 .4316 .1419 .0503 .1485 .0355 .1419 .0503

4 .4316 .0503 .1419 .0355 .1485 .0503 .1419

5 .4316 .0503 .0355 .1419 .0503 .1485 .1419

6 .4316 .0355 .0503 .0503 .1419 .1419 .1485

Unconditional
Probabilities

Target Cell Chanj ge Every 1 te ration: Cell 0 to . ..

0 1 2 3 4 5 6

.4150 .0975 .0975 .0975 .0975 .0975 .0975

Table VI. Target motion probabilities used in the HexTrack motion model. Conditional
probabilities incorporate the target's velocity, represented by change of cell, on the
previous iteration. For example, if the target traveled left one cell (from 0 to 3) on the
previous iteration, it will move to the next cell to the left (from 0 to 3) this iteration with
probability 0.1485. If velocity state is ignored, the target travels one cell to the left with
probability 0.0975.

55

56

APPENDIX E. HEXTRACK SOURCE CODE

program HexTrack;
{Author: Daniel B. Wlddls}

{$N+ enable 80x87 mode for double-precision reals}

uses Graph,CRT;

type
MotionArray = Array[0..7, 0..6] of single;

{tripwire data files}

const
BGIdir = '\tp\bgi'; {location of BGI files}
TWFNameS = '\tp\tripwire\spoktrip.dat',
TWFNameR = '\tp\tripwire\randtrip.dat',
TWPNameG = '\tp\tripwire\gridtrip.dat',
TWFNameP = '\tp\tripwire\proxtrip.dat'

{this Is a state transition matrix for target velocity. Velocity states
are: 1 2

3 0 4
5 6 . unconditionals are overall proportion of time In states.}

TMotion: MotionArray =
{Conditional: Vel oc. ity State}
{ 0 1 2 3 4 5 6 }

/"0)((0.3922 , 0.1013 / 0 1013 / 0.1013 / 0 1013 / 0 1013 / 0.1013),

{1} (0.4316 , 0.1485 , 0 1419 / 0.1419 1 0 0503 r 0 0503 / 0.0355),

{2} (0.4316 , 0.1419 / 0 1485 / 0.0503 r 0 1419 i 0 0355 / 0.0503),

{3} (0.4316 , 0.1419 , 0 0503 / 0.1485 i 0 0355 i 0 1419 / 0.0503),

{4} (0.4316 , 0.0503 / 0 1419 / 0.0355 i 0 1485 i 0 0503 , 0.1419),
{5} (0.4316 , 0.0503 i 0 0355 / 0.1419 t 0 0503 i 0 .1485 / 0.1419),

{6} (0.4316 , 0.0355
{unconditional}

i 0 0503 / 0.0503 t 0 1419 i 0 1419 / 0.1485),

(0.4150 , 0.0975 , 0 0975 , 0.0975 i 0 .0975 , 0 .0975 / 0.0975));

{this constant determines detection probability of a single tripwire
In a single Iteration for a target within Its detection region}

DetectProb = 0.8;

{these constants are used for statistical data collection}
Iterations = 50;
Replications = 60;
StopTime = Iterations*Replications;

(these constants define size of hex grid}
GridSize = 150; {miles, each dimension}
YCells = 85; {max:85 due to heap overflows}
XCells = Round(YCells*0.866025404); {85*cos(Pl/6) = 74}
Cells = XCells*YCells; {85*74 = 6290}

Radius = (GridSize*2/3)/(YCells+0.5); {miles, from center of hex
to each corner}

Scale = 312/((XCells+0.5)*1.732050808); {pixels per hex}

MaxTW = 250; {max number of tripwires (actual number from TWFlle)}

type
(This type Is for TWArray, used to calculate detection probabilities
for each cell-trlpwlre combination}

TWPtr = ATWRecord;
TWRecord = record

XI, Yl, X2, Y2 : single; {tripwire endpolnts}
end; {record}

TWArrayType = Array[1..MaxTW] of TWPtr;

57

{This type Is for TWllst, a part of each CellRecord, a linked list of
tripwires 'Incident' (close enough for nonzero detection probability)
to each cell}

IncTWPtr = AIncTWRecord;
IncTWRecord = record

TWNum : Integer;
AlmProb : double;

Next : IncTWPtr;
end; {record}

{Incident tripwire}
{probability of detection

OR false alarm}
{next Incident one}

{This type Is for CellArray}
CellPtr = ACellRecord;
CellRecord = record

CellX,
CellY : single;

Ndensity,

Pdensity,

Temp,
NAP double;

TWllst : IncTWPtr;

{cell center, used for detection
probability calcs and missed dlst.}

(target distribution density with
negative Information considered}

{target distribution density without
negative Information considered}

{for Nd, Pd calculations}
{probability no tripwires alarm
given target In this cell}
{list of TWs Incident to cell}

{Note: Sort vars Index other cells:
CellArray[1]*.NSort Indexes cell with highest
Ndensity (similar for PSort)}

NSort, {for AOU calcs of Ndensity}
PSort : Integer; {for AOU calcs of Pdensity}

end; {record}

CellArrayType = Array[l..Cells] of CellPtr;
AdjCellType = Array[1..6] of Integer; {used for movement update;
HexType = Array[1..12] of Integer; {used to draw hexes on screen}

CellArray : CellArrayType;
TWArray : TWArrayType;
AdjCells : AdjCellType;

TargetC,
Check,
NumTW,
X, Y, C,
NextMatch,
TC, HeapSlze Integer;

LastMove,
Color : Byte;

Dlst,
TWLen, Proj,
Prob, RadEq s
FalseProb,

single;

FalseProbAssumed,
NTotalProb,
PTotalProb : double;

{list of adjacent cell numbers (temp)}

{'real' target cell}
{file Input line check}
{number of TW's read In}

{counting variables}

{velocity state}
{used for graphical display of likelihood
distributions}

(for tripwire detection calcs}
{false alarm probability of a single
tripwire In a single Iteration}

{false alarm probability used in tracker}

{for normallzing/AOU size calcs}

NMMD,
PMMD,
NContain,
PContain
NIn5 0AOU,
PIn50AOU,

single;

{Mean missed distance}

{Prob In this or higher prob cell}

{Iterations target contained In 509s

58

SimTime : Integer;

TempPtr,
TempPtr2 : IncTWPtr;
Alarmed,
Searching : Boolean;

SimFile,
TWPile : Text;

containment region}
{Total elapsed Iterations}

{for Incident TW Incrementing}
{for other cells Incident to TW}
{boolean If TW alarms}
{when TW found In list}

{stats output}
{stores tripwire pattern}

SimFName,
TWFName,
S
PolyPoints
GraphicsOn
InitStatus
CH : CHAR;

STRING;
HexType;
BOOLEAN;
Integer;

fselecfced tripwire field}
{for graphic text output.?
{for FlllPoly procedure}
(toggle display of densities}
{temp variable to watch progress}

GRAPHICS INITIALIZATION

procedure InitGraphics;
{Initializes graphics mode; returns error If not successful.}
{This procedure from D. Cooper, _0h! Pascal!_ 1992, p. 111.}

var GraphDriver,
GraphMode: Integer;

begin {InitGraphics}
GraphDriver := Detect;
InitGraph (GraphDriver, GraphMode, BGIdir);

end; {InitGraphics}

BINARY HEAP SORTING ROUTINES

{ The Heaplfy and HeapExtractMax routines are used in a binary heapsort
routine. In the heapsort, CellArray begins with NSort and PSort
referencing cells sorted by the values of NDenslty or PDenslty on the
previous Iteration. To update this sort, the binary parents are heaplfled
from the bottom to the top of the heap, placing lower NDenslty and PDenslty
at the top. The HeapExtractMax routine is then called to sequentially
remove the lowest value and place it at the end of the list, reducing the
size of the remaining heap. The resulting array Is sorted such that
CellArray [CellArray [1]A .NSort]* .NDenslty is the highest density.}

procedure NHeapify(var CellArray: CellArrayType; i : integer);
{Maintains binary heapsort property for 1 and its children.
Assumes 'children' of 1 have heap property.}

L,
R,
M,
Temp integer;

begin {NHeaplfy}
L := i SHL 1; {21}
R := (i SHL 1) OR 1; {21+1}
if L <= Heapsize then begin {if I is leaf. exit}

M := L;
if R <= Heapsize then begin

if CellArray[CellArray[L]A.NSort]A.Ndensity >
CellArray[CellArray[R]A.NSort]A.Ndensity then begin

M := R;
end; (if L < R}

end; {If R <= Heapsize}

59

if CellArray[CellArray[M]A.NSort]A.Ndensity <
CellArray[CellArray[i]A.NSort]A.Ndensity then begin

Temp := CellArray[i]A.Nsort;
CellArray[i]A.NSort := CellArray[M]A.NSort;
CellArray[M]A.NSort := Temp;
NHeapify(CellArray,M);

end; {If M > 1}
end; {if L <= Heapsize}

end; {NHeaplfy}
(;
function NHeapExtractMax(var CellArray : CellArrayType) : INTEGER;
{returns cell at top of heap; updates heap}

begin {HeapExtractMax}
NHeapExtractMax := CellArray[1]A.NSort;
CellArray[1]A.NSort := CellArray[HeapSize]A.NSort;
Dec(HeapSize);
NHeapify(CellArray,1);

end; {HeapExtractMax}
{ ;
procedure PHeapify(var CellArray: CellArrayType; i : integer);
{Maintains binary heapsort property for 1 and Its children.
Assumes 'children' of 1 have heap property.}

var
L,
R,
M,
Temp : integer;

begin {PHeaplfy}
L := i SHL 1; {21}
R := (i SHL 1)-0R 1; {21+1}
if L <= Heapsize then begin {If I Is leaf, exit}

M := L;
if R <= Heapsize then begin

if CellArray[CellArray[L]A.PSort]A.Pdensity >
CellArray[CellArray[R]A.PSort]A.Pdensity then begin

M := R;
end; {If L < R}

end; {If R <= Heapsize}
if CellArray[CellArray[M]A.PSort]A.Pdensity <

CellArray[CellArray[i]A.PSort]A.Pdensity then begin
Temp := CellArray[i]A.PSort;
CellArray[i]A.PSort := CellArray[M]A.PSort;
CellArray[M]A.PSort := Temp;
PHeapify(CellArray,M);

end; {If M > 1}
end; {If L <= Heapsize}

end; {PHeaplfy}
{ ;
function PHeapExtractMax(var CellArray : CellArrayType) : INTEGER;
{returns cell at top of heap; updates heap}

begin {HeapExtractMax}
PHeapExtractMax := CellArray[1]A.PSort;
CellArray[1]A.PSort := CellArray[HeapSize]A.PSort;
Dec(HeapSize);
PHeaplfy(CellArray,1);

end; {HeapExtractMax}

, —-;
{ MAIN PROGRAM >
(}

begin
{Reseed Random Number Generator}
Randomize;

60

Clrscr;
Writeln('Enter choice of:
WritelnC Tripwire Field
Writeln('
WritelnC
Writeln('
WritelnC
readln(S
S[l]
S[2]
S[3]
CH := 'N';
case S[l] of

[S]poke
[R]andom
[G]rid
[P]roximity

UpCase(S[l]);
UpCase(S[2]);
UpCase(S[3]);

);
Motion Model

[N]o Velocity State
[V]eloclty State

A Level');
[Z]ero = 0 00);
[L]ow = 0 01);
[H]igh = 0 10');
0.0[0] . . 0.10[A]

TWFNameS;
'Enter number of spokes

[1] through 1[0]');

CH;

per sextant: ')

= TWFNameP;
Enter relative proximity Of sources

[S] =0 6 . . [Z] = 0 95 ');
[0] =1 0 . . [9] = 1 45 ');
[A] =1 5 . . [C] = 1 6 ');

'S' : begin
TWFName
Writeln('
WritelnC
readln(CH);
TWFName[17]

end; {'S'}
'R' : TWFName := TWFNameR;
'G' : TWFName := TWFNameG;
' P' : begin

TWFName
Writeln('Enter relative proximity of sources:');
WritelnC'
WritelnC'
WritelnC'
readln(CH);
TWFName[17] := CH;

end; f'P'J
else begin

WritelnC'Invalid Response');
Halt ;

end; {else}
end; {case}
if S[2] = 'N' then

for C := 0 to 6 do
for TC := 0 to 6 do

{make all transition matrix entries independent of current
velocity state}

TMotion[C,TC] := TMotion[7,TC] ;
FalseProbAssumed := 0.01;
case S[3] of

'Z' : begin
FalseProb := 0.0;
FalseProbAssumed

end; {'Z'}
'L' : FalseProb := 0.01;
'H' : begin

FalseProb := 0.1;
FalseProbAssumed

end; i'Z'}

0.0;

0.1;

'0' FalseProb = 0 0;
'1' FalseProb = 0 01
'2' FalseProb = 0 02
'3' FalseProb = 0 03
'4' FalseProb = 0 04
'5' FalseProb = 0 05
'6' FalseProb = 0 06
'7' FalseProb = 0 07
'8' FalseProb = 0 08
'9' FalseProb = 0 09
'A' FalseProb = 0 1;
else begin

WritelnC'Invalid Response');
Halt ;

61

end; {else}
end; (case}
if CH <> 'N' then begin {SlmFlle stores statistical Information}

if S[l] = 'S' then
SimFName := '\tp\tripwire\simoutD'+CH+'.'+S

else
SimFName := '\tp\tripwire\simoutP'+CH+'.'+ S;

end {If}
else

SimFName := '\tp\tripwire\simout.'+S;

Clrscr;
Writeln('Initializing detection probabilities...please wait...');
InitStatus := 0;

{Load TW's from file}
Assign(TWFile,TWFName);
Reset(TWFile);
{TWFile has one line for each tripwire In the following- format:

SourceX SourceY RecelverX RecelverY 99 }
NumTW := 1;
while (NumTW <= MaxTW) and (not EOF(TWFile)) do begin

NEW(TWArray[NumTW]);
with TWArray[NumTW]A do begin

readln(TWFile,XI,Y1,X2,Y2,Check);
end; {with}
if Check =99 then

Inc(NumTW);
end; {while}
Dec(NumTW);
Close(TWFile);

{Open output file}
Assign(SimFile,SimFName);
Rewrite(SimFlle);
writeln(SimFile,
'Negative Information Tracker Positive Information Tracker');
writein(SimFlle,

MMD CDF MMD CDF');
Close(SimFile);

{Initialize CellArray}
for C := 1 to Cells do begin

X := (C-l) mod XCells + 1;
Y := (C-l) div XCells + 1;
NEW(CellArray[C]);
with CellArray[C]A do begin

{calculate center of cell}
if Y mod 2=0 then

CellX := (X-l/2) * 1.7320508*Radius
else

CellX := X * 1.7320508*Radius;
CellY := (Y-l/3) * 1.5*Radius;
{■assume target distributed uniformly}
Ndensity := 1.0/Cells;
Pdensity := 1.0/Cells;
{initialize other variables}
NAP := 1.0;
TWList := nil;
NSort := C;
PSort := C;

end; {with}
end; {for}

{Initialize Target Position and Velocity}
{assume target distributed uniformly}
TargetC := Trunc(l + Random*Cells);

62

LastMove := Trunc(7*Random) mod 7;

(Initialize Negative probabilities}
for TC := 1 to NumTW do begin

with TWArray[TC]A do begin
for C := 1 to Cells do begin

with CellArray[C]A do begin
{ensure forward scattered detection (> 90 degrees)}
if (Xl-CellX)*(X2-CellX) +

(Yl-CellY)*(Y2-CellY) < 0.0 then begin
{calculate denominator to avoid divide by zero}
TWLen := Sqrt(((X2-X1)*(X2-X1) + (Y2-Y1)*(Y2-Y1)));
if TWLen > 0.0 then begin

{calculate projection onto tripwire}
Proj := ((X2-Xl)*(CellX-Xl) + (Y2-Y1)*(CellY-Yl))/TWLen;
{calculate distance from tripwire}
Dist := ((CellX-Xl)*(CellX-Xl) +

(CellY-Yl)*(CellY-Yl) -
(Proj*Proj));

faccount for small negative numbers as a result of
floating-point round-off error}

if Dist <= 0.0 then Dist := 0.0
else Dist := Sqrt(Dist);

{calculate width of square with same center as cell,
equal area}

RadEq := Sqrt(Radius*Radius*(3/8)*Sqrt(3));
{calculate proportion of this square within one mile
of tripwire}

If Dist < 1 - RadEq then
{entire square within 1 of TW}
Prob := DetectProb

else
{part of square Is outside 1 of TW}
Prob := DetectProb*(RadEq + 1 - Dist)/(2*RadEq);

if Prob > 0.0 then begin
{add this TW to list for this cell}
TempPtr := TWList;
NEW(TWList);
with TWListA do begin

TWNum := TC;
AlmProb := 1.0 - (1.0-Prob)*(1.0-PalseProbAssumed);
NAP := NAP * (1.0 - AlmProb);
Next := TempPtr;

end; {with}
end {If}
else begin

NAP := NAP * (1.0 - FalseProbAssumed);
{If Prob <= 0.0 then AlmProb := FalseProbAssumed.
This number Is not assigned to a variable
to conserve memory}

end; {else}
end {If}
else begin

NAP := NAP * (1.0 - FalseProbAssumed);
end; {else}

end {If}
else begin

NAP := NAP * (1.0 - FalseProbAssumed);
end; {else}

end; {with}
end; {for}
Inc(InitStatus) ;
GotoXY(l,2);
writeln(100*InitStatus/NumTW:5:1,' % ');

end; {with}
end; {for}

63

InitGraphics;
GraphicsOn := TRUE;
SetTextStyle(SmallFont,HorizDir,6);
SetTextJustify(CenterText,TopText);
OutTextXY(160,0,'Negative Information Tracker');
OutTextXY(480,0,'Positive Information Tracker');
{Set graph palette colors}
SetPalette(l,56)
SetPalette(2,24)
SetPalette(3,16)
SetPalette(4,10)
SetPalette(5,34)
SetPalette(6,26)
SetPalette(7,58)
SetPalette(8,30)
SetPalette(9,62)

{Dark gray}

{Dark green}

{In between}

{Bright yellow}

{Main operating loop}
SimTime := 0;
while SimTime < StopTime do begin;

Inc(SimTime);

{If at end of iterations, re-randomize target}
if (SimTime mod Iterations) = 1 then begin

{Initialize Target Position and Velocity}
TargetC := Truncd + Random*Cells);
LastMove := Trunc(7»Random) mod 7;
{Initialize Target Distribution}
for C := 1 to Cells do begin

with CellArray[C]A do begin
Ndenslty := 1.0/Cells;
Pdensity := 1.0/Cells;
NSort := C;
PSort := C;

end; {with}
end; {for}

end; {If}

{Move real target; for generation of positive Information}
PTotalProb := Random;
TC := 0;
while TC < 7 do begin

{Move target conditional on velocity state}
PTotalProb := PTotalProb - TMotion[LastMove,TC];
if PTotalProb < 0.0 then begin

{this is selected movement}
if ((TargetC-1) div XCells) mod 2=0 then begin fodd row}

case TC of
1 : if TargetC > XCells then

TargetC := TargetC - XCells;
2 : if (TargetC > XCells) and

(TargetC mod XCells <> 0) then
TargetC := TargetC - XCells + 1;

3 : if TargetC mod XCells <> 1 then
TargetC := TargetC - 1;

4 : if TargetC mod XCells <> 0 then
TargetC := TargetC + 1;

5 : if TargetC <= Cells - XCells then
TargetC := TargetC + XCells;

6 : if (TargetC <= Cells - XCells) and
(TargetC mod XCells <> 0) then
TargetC := TargetC + XCells + 1;

end; {case}
end else begin {even row}

case TC of
1 : if TargetC mod XCells <> 1 then

64

TargetC := TargetC - XCells - 1;
2 : TargetC := TargetC - XCells;
3 : if TargetC mod XCells <> 1 then

TargetC := TargetC - 1;
4 : if TargetC mod XCells <> 0 then

TargetC := TargetC + 1;
5 : if (TargetC <= Cells - XCells) and

(TargetC mod XCells <> 1) then
TargetC := TargetC + XCells - 1;

6 : if TargetC <= Cells - XCells then
TargetC := TargetC + XCells;

end; {case}
end; (if}
LastMove := TC;
(force exit from loops}
TC := 7;

end; {if}
Inc(TC);

end; {while}

{Update Ndenslty and Pdensity Array for target movement}
{First loop will create Temp as new distribution; second loop
reassigns Temp to NDenslty}

for C := 1 to Cells do begin
if ((C-l) div XCells) mod 2=0 then begin (odd row}

if C > XCells then
AdjCells[1] := C - XCells

else AdjCells[l] := C;
if (C > XCells) and (C mod XCells <> 0) then

AdjCells[2] := C - XCells + 1
else AdjCells[2] := C;
if C mod XCells <> 1 then

AdjCells[3] := C - 1
else AdjCells[3] := C;
if C mod XCells <> 0 then

AdjCells[4] := C + 1
else AdjCells[4] := C;
if C <= Cells - XCells then

AdjCells[5] := C + XCells
else AdjCells[5] := C;
if (C <= Cells - XCells) and (C mod XCells <> 0) then

AdjCells[6] := C + XCells + 1
else AdjCells[6] := C;

end {if}
else begin {even row)

if C mod XCells <> 1 then
AdjCells[1] := C - XCells - 1

else AdjCells[1] := C;
AdjCells[2] := C - XCells;
if C mod XCells <> 1 then

AdjCells[3] := C - 1
else AdjCells[3] := C;
if C mod XCells <> 0 then

AdjCells[4] := C + 1
else AdjCells[4] := C;
if (C <= Cells - XCells) and (C mod XCells <> 1) then

AdjCells[5] := C + XCells - 1
else AdjCells[5] := C;
if C <= Cells - XCells then

AdjCells[6] := C + XCells
else AdjCells[6] := C;

end; (else}
CellArray[C]A.Temp := CellArray[C]A.Ndensity*TMotion[7,0];
for TC := 1 to 6 do

CellArray[C]A.Temp := CellArray[C]A.Temp +
CellArray[AdjCells[TC]]A.Ndensity*TMotion[7,7-TC];

end; {for}

65

for C := 1 to Cells do begin
with CellArray[C]A do begin

Ndensity := Temp;
end; {with}

end; {for}

{First loop will create Temp as new distribution; second loop
reassigns Temp to PDenslty}

tor C := 1 to Cells do begin
if ((C-l) div XCells) mod 2=0 then begin (odd row}

if C > XCells then
= C - XCells else AdjCells[l] := C;
and (C mod XCells <> 0) then
= C - XCells + 1 else AdjCells[2] := C;
<> 1 then
= C - 1 else AdjCells[3] := C;
<> 0 then
= C + 1 else AdjCells[4] := C;
XCells then
= C + XCells else AdjCells[S] := C;
XCells) and (C mod XCells <> 0) then

= C + XCells + 1 else AdjCells[6] := C;

AdjCells[l]
if (C > XCells)

AdjCells[2]
if C mod XCells

AdjCells[3]
if C mod XCells

AdjCells[4]
if C <= Cells -

AdjCells[5]
if (C <= Cells

AdjCells[6]
end {If}
else begin {even row}

if C mod XCells <> 1 then
AdjCells[l] := C - XCells - 1 else AdjCells[l] := C;

AdjCells[2] := C - XCells;
if C mod XCells <> 1 then

AdjCells[3] := C - 1 else AdjCells[3] := C;
if C mod XCells <> 0 then

AdjCells[4] := C + 1 else AdjCells[4] := C;
if (C <= Cells - XCells) and (C mod XCells <> 1) then

AdjCells[5] := C + XCells - 1 else AdjCells[5] := C;
if C <= Cells - XCells then

AdjCells[6] := C + XCells else AdjCells[6] := C;
end; {If}
CellArray[C]A.Temp := CellArray[C]A.Pdensity*TMotion[7,0];
for TC := 1 to 6 do

CellArray[C]A.Temp := CellArray[C]A.Temp +
CellArray[AdjCells[TC]]A.Pdensity*TMotion[7,7-TC];

end; {for}
for C := 1 to Cells do begin

with CellArray[C]A do begin
Pdensity := Temp;

end; {with}
end; {for}

{Incorporate positive and negative Information}
TempPtr := CellArray[TargetC]A.TWList;
{TC will step *down* through all TW's. The linked list TWList Is
sorted downward, and will advance whenever TC passes each link.
When TC = TW In link, then both false alarm or real detection are
possible with that TW; otherwise only false alarm will trigger.}

TC := NumTW;
{Assign NextMatcb to first tripwire In actual target cell's list}
if TempPtr = nil then

NextMatch := 0
else

NextMatch := TempPtr".TWNum;

while TC > 0 do begin
{Assign NextMatch to next tripwire In actual target cell's list}
if TC < NextMatch then begin

TempPtr := TempPtr".Next;
if TempPtr = nil then

NextMatch := 0
else

66

NextMatch := TempPtrA.TWNum;
end; {if}

if TC = NextMatch then
{Alarm If either actual or false detection}
Alarmed := Random < 1.0 - (1.0-TempPtrA.AlmProb)

*(1.0-FalseProb)/(1.O-PalseProbAssumed)
else

{Alarm If false detection only}
Alarmed := Random < FalseProb;
{this Is value of AlmProb for remote cell-tripwire combinations}

{Alj = prob tw j alarms given target in cell 1
= AlmProb If cell near tripwire
= FalseProb otherwise}

{PI' = PI * Prod(j alarmed,Alj)}
{Nl' = Nl * Prod(j alarmed,Alj/(l-Alj))

TC = j, C = 1}
If Alarmed then begin
{iterate through all cells}
{Increase N/PDenslty In cells associated with detecting TW}

for C := 1 to Cells do begin
{find tripwires near this cell}
TempPtr2 := CellArray[C]A.TWList;
Searching := TRUE;
{loop until detecting tripwire located or determined not
near this cell}

while (TempPtr2 <> nil) and Searching do begin
if TempPtr2A.TWNum = TC then begin

{detecting TW found In this cell's list}
with CellArray[C]A do begin

NDensity := NDensity*TempPtr2A.AlmProb
/ (1.0 - TempPtr2A.AlmProb);
{denominator counteracts later
multiplication by NAP}

PDensity := PDensity*TempPtr2A.AlmProb;
end; {with}
Searching := FALSE;

end; {If}
TempPtr2 := TempPtr2A.Next;

end; {while}
{loop exits if TempPtr2 = nil (end of list) or

Searching = FALSE (TW found) or both}
if Searching then begin

{detecting TW not found in this cell's list}
with CellArray[C]A do begin

NDensity := NDensity*FalseProbAssumed
/(1.0 - FalseProbAssumed);
{denominator counteracts later
multiplication by NAP}

PDensity := PDensity*FalseProbAssumed;
end; {with}

end; {if}
end; {for}

end; {if}
{if not Alarmed, later multiplication by NAP will account for this}
{advance to next TW}
Dec(TC);

end; {while}

NTotalProb := 0.0;
PTotalProb := 0.0;
for C := 1 to Cells do begin

with CellArray[C]A do begin
{Incorporate negative information}
Ndensity := Ndensity * NAP;
{Calculate sums to normalize}
NTotalProb := NTotalProb + Ndensity;

67

PTotalProb := PTotalProb + Pdensity;
end; {with}

end; {for}
NMMD := 0.0;
PMMD := 0.0;
for C := 1 to Cells do begin

with CellArray[C]A do begin
{Normalize}
Ndensity := Ndensity / NTotalProb;
Pdensity := Pdensity / PTotalProb;
{Calculate square of missed distance}
Dist := (CellArray[TargetC]A.CellX - CellX)

♦(CellArray[TargetC]*.CellX - CellX)
+ (CellArray[TargetC]A.CellY - CellY)
*(CellArray[TargetC]A.CellY - CellY);

NMMD := NMMD + NDensity * Dist;
PMMD := PMMD + PDenslty * Dist;

end; {with}
end; {for}
NMMD := Sqrt(NMMD);
PMMD := Sqrt(PMMD);

(Sort by Ndensity/Pdensity}
{Uses Binary Heapsort. Step 1; build heap sorted with < at top.

Step 2; de-heap putting < at bottom. }
{Step 1}
Heapsize := Cells;
for C := Heapsize div 2 downto 1 do begin

NHeapify(CellArray,C);
PHeapify(CellArray,C);

end; {for}
{Step 2}
while Heapsize > 1 do begin

TC := NHeapExtractMax(CellArray);
CellArray[Heapslze+l]A.NSort := TC;
Inc(Heapsize);
TC := PHeapExtractMax(CellArray);
CellArray[Heapsize+l]A.PSort := TC;

end; {while}

{Draw Current Target Distribution}
{Toggle graphics on/off to speed display}
If KeyPressed then begin

CH := ReadKey;
CH := UpCase(CH);
if CH = 'G' then begin

GraphlcsOn := not GraphicsOn;
if not GraphicsOn then

OutTextXY(320,180,'Graphics Disabled');
end; {If}

end; {If}

NTotalProb := 1.0;
PTotalProb := 1.0;

if GraphicsOn then begin
SetFillStyle(SolidPill,Black);
Bar(0,24,639,359);

end; {If}

for C := 1 to Cells do begin
if CellArray[C]A.Nsort = TargetC then begin

NContain := 1.0 - NTotalProb +
Random*CellArray[TargetC]A.NDensity;

if NContain <= 0.5 then
Inc(NIn50AOU);

end; {If}

68

if CellArray[C]A.Psort = TargetC then begin
PContain := 1.0 - PTotalProb +

Random*CellArray[TargetC]A.PDensity;
if PContain <= 0.5 then

Inc(PIn50AOU);
end; {If}

if GraphicsOn then begin
with CellArray[CellArray[C]A.Nsort]A do begin

if NTotalProb > 0.9460 then Color
0.8007 then Color
0.6065 then Color
0.4111 then Color
0.2494 then Color
0

if NTotalProb
if NTotalProb
if NTotalProb
if NTotalProb
if NTotalProb
if NTotalProb
if NTotalProb
if NTotalProb

9 else 11/3 3 d }
8 else {2/3 3 d }
7 else a s d)
6 else {4/3 3 d }
5 else {5/3 3 d }
4 else {2 3 d }
3 else {7/3 3 d }
2 else {8/3 3 d }
1 {3 3 d.}

= Black;

13 53 then Color
0657 then Color
0286 then Color
0111 then Color

else Color
if (CellArray[C]A.NSort = TargetC) then Color :=
{Update containment region}
NTotalProb := NTotalProb - Ndensity;
if Color <> Black then begin

SetColor(Black);
SetPillStyle(SolidPill,Color);

4 +
Round(CellX/Radius*Scale);
24 +
Round(CellY/Radius*Scale -
Scale);
4 +
Round(CellX/Radius*Scale +
Scale*0.8660254);
24 +
Round(CellY/Radius*Scale -
Scale*0.5);
4 +
Round(CellX/Radius*Scale +
Scale*0.8660254);
24 +
Round(CellY/Radius*Scale +
Scale*0.5);
4 +
Round(CellX/Radius*Scale);
24 +
Round(CellY/Radius*Scale +
Scale);
4 +
Round(CellX/Radius*Scale -
Scale*0.8660254);
24 +
Round(CellY/Radius*Scale +
Scale*0.5);
4 +
Round(CellX/Radius*Scale -
Scale*0.8660254);
24 +
Round(CellY/Radius*Scale -
Scale*0.5);

FillPoly(6,PolyPoints)
end; {If}

end; {with}
with CellArray[CellArray[C]A.Psort]A do begin

if PTotalProb > 0.9460 then Color
if PTotalProb > 0.8007 then Color
if PTotalProb > 0.6065 then Color
if PTotalProb > 0.4111 then Color

WHITE;

PolyPoints[1]

PolyPoints[2]

PolyPoints[3]

PolyPoints[4]

PolyPoints[5]

PolyPoints[6]

PolyPoints[7]

PolyPoints[8]

PolyPoints[9]

PolyPoints[10]

PolyPoints[11]

PolyPoints[12]

= 9 eise {1/3 3 d }
= 8 eise {2/3 3 d }
= 7 eise {1 s d }
= 6 eise {4/3 3 d }

69

= 5 else {5/3 s.d.}
= 4 else {2 s.d.}
= 3 else {7/3 s.d.}
= 2 else {8/3 s.d.}
= 1 {3 s.d.}
= Black;

If PTotalProb > 0.24 94 then Color
if PTotalProb > 0.13 53 then Color
If PTotalProb > 0.0657 then Color
If PTotalProb > 0.0286 then Color
If PTotalProb > 0.0111 then Color

else Color
If (CellArray[C]A.PSort = TargetC) then Color := WHITE;
{Update containment region}
PTotalProb := PTotalProb - Pdensity;
if Color <> Black then begin

SetColor(Black);
SetPillStyle(SolidFill, Color) ;
PolyPoints[1] := 324 +

Round(CellX/Radius*Scale);
:= 24 +

Round(CellY/Radius*Scale -
Scale);

:= 324 +
Round(CellX/Radius*Scale +
Scale*0.8660254);

:= 24 +
Round(CellY/Radius*Scale -
Scale*0.5);

:= 324 +
Round(CellX/Radius*Scale +
Scale*0.8660254);

:= 24 +
Round(CellY/Radius*Scale +
Scale*0.5);

:= 324 +
Round(CellX/Radius*Scale);

:= 24 +
Round(CellY/Radius*Scale +
Scale);

:= 324 +
Round(CellX/Radius*Scale -
Scale*0.8660254);

:= 24 +
Round(CellY/Radius*Scale +
Scale*0.5);

:= 324 +
Round(CellX/Radius*Scale -
Scale*0.8660254);

:= 24 +
Round(CellY/Radius*Scale -
Scale*0.5);

PillPoly(6,PolyPoints);
end; {If}

end; {with}
end {If}
else begin

NTotalProb := NTotalProb -
CellArray[CellArray[C]A.Nsort]A.Ndensity;

PTotalProb := PTotalProb -
CellArray[CellArray[C]A.Psort]A.Pdensity;

end; {else}
end; {for}

SetColor(White);
SetFillStyle(SolidFill,Black);
Bar(0,360,639,479);

Str(NMMD :4:6,S);
OutTextXY(160,360,'Mean Missed Dist: '+S);
Str(PMMD :4:6,S);
OutTextXY(480,360,'Mean Missed Dist: '+S);
Str(NContain :4:6,S);

PolyPoints[2]

PolyPoints[3]

PolyPoints[4]

PolyPoints[5]

PolyPoints[6]

PolyPoints[7]

Po-lyPoints[S]

PolyPoints[9]

PolyPoints[10]

PolyPoints[11]

PolyPoints[12]

70

OutTextXY(160,380,'AOU to Include T: '+S);
Str(PContaln :4:6,S);
OutTextXY(480,380,'AOU to include T: '+S);
Str(NIn50AOU/SimTime :4:6,S);
OutTextXY(160,4 00,'Prop, in 50% AOÜ: '+S);
Str(PIn50AOÜ/Simtime :4:6,S);
OutTextXY(480,400,'Prop, in 50% AOU: '+S);
Str(SimTime :6,S);
OutTextXY(320,440,'Number of iterations: '+S);

Append(SimPile);
writeln(SimFile,NMMD :10:4,

NContain :10:4,
PMMD :20:4,
PContain :10:4);

Close(SimFile);
end; {while}

CloseGraph;
end.

71

72

LIST OF REFERENCES

Borland International, Inc., Turbo Pascal Version 7.0, 1992.

Loane, E. P., Acoustic Forward Scattering: Surveillance Capabilities and Issues, Report
to Johns Hopkins University Applied Physics Laboratory, September 4, 1992.

Loane, E. P., Model for Acoustic Forward Scatter Detection, Memorandum to Johns
Hopkins University Applied Physics Laboratory, December 16, 1993.

Loane, E. P., Surveillance Evaluation Methodology, Memorandum to Johns Hopkins
University Applied Physics Laboratory, September 1, 1993.

Ross, S. M., Introduction to Probability Models, Fifth Edition, Harcourt Brace &
Company, 1993.

Stone, L. D. and Kratzke, T. M., Comparison of Linear and NonLinear Trackers, Report
to Naval Research Laboratory, December 16, 1991.

Wagner, D. H., Naval Tactical Decision Aids, Lecture Notes, U.S. Naval Postgraduate
School, June 1989.

73

74

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5101

3. Department of Operations Research 1
Attn: Professor Alan Washburn, Code OR/Ws
Naval Postgraduate School
Monterey, California 93943-5000

4. Department of Operations Research 1
Attn: Professor Robert Dell, Code OR/De
Naval Postgraduate School
Monterey, California 93943-5000

5. The Johns Hopkins University 1
Applied Physics Laboratory
Attn: L. F. Rogers (7-338)
Johns Hopkins Road
Laurel, Maryland 20723-6099

6. EPL Analysis, Inc. 1
Attn: E. P. Loane
2919-A Olney-Sandy Spring Road
Olney, Maryland 20832

7. Metron, Inc. 1
11911 Freedom Drive, Suite 800
Reston, Virginia 22090

8. Daniel H. Wagner, Associates 1
Station Square One
Paoli, Pennsylvania 19301

75

9. Naval Undersea Warfare Center
Detachment New London
New London, Connecticut 06320

10. Naval Command Control and Ocean Surveillance Center
San Diego, California 92152-7383

11. LT Daniel B. Widdis, USN
85 Woodbridge Drive
Colorado Springs, Colorado 80906-4470

76

